Charge Redistribution of Lattice‐Mismatched Co─Cu3P Boosting pH‐Universal Water/Seawater Hydrogen Evolution

Author:

Zhang Yu12,Li Kun13,Li Yongkang4,Mi Junbao12,Li Caixia13,Li Hongdong12,Wang Lei12ORCID

Affiliation:

1. State Key Laboratory Base of Eco‐Chemical Engineering International Science and Technology Cooperation Base of Eco‐chemical Engineering and Green Manufacturing Qingdao University of Science and Technology Qingdao 266042 P. R. China

2. College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China

3. Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao 266042 China

4. College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China

Abstract

AbstractPractical applications of the hydrogen evolution reaction (HER) rely on the development of highly efficient, stable, and low‐cost catalysts. Tuning the electronic structure, morphology, and architecture of catalysts is an important way to realize efficient and stable HER electrocatalysts. Herein, Co‐doped Cu3P‐based sugar‐gourd structures (Co─Cu3P/CF) are prepared on copper foam as active electrocatalysts for hydrogen evolution. This hierarchical structure facilitates fast mass transport during electrocatalysis. Notably, the introduction of Co not only induces a charge redistribution but also leads to lattice‐mismatch on the atomic scale, which creates defects and performs as additional active sites. Therefore, Co─Cu3P/CF requires an overpotential of only 81, 111, 185, and 230 mV to reach currents of 50, 100, 500, and 1000 mA cm−2 in alkaline media and remains stable after 10 000 CV cycles in a row and up to 110 h i–t stability tests. In addition, it also shows excellent HER performance in water/seawater electrolytes of different pH values. Experimental and DFT show that the introduction of Co modulates the electronic and energy level structures of the catalyst, optimizes the adsorption and desorption behavior of the intermediate, reduces the water dissociation energy barrier during the reaction, accelerates the Volmer step reaction, and thus improves the HER performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3