Ultrasound Induces Local Disorder of FeOOH on CdIn2S4 Photoanode for High Efficiency Photoelectrochemical Water Oxidation

Author:

Shao Bo1,Meng Linxing23,Chen Fang1,Wang Jianyuan1,Zhai Wei1,Li Liang2ORCID

Affiliation:

1. MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology Northwestern Polytechnical University Xi'an 710072 P. R. China

2. Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), School of Physical Science and Technology Soochow University Suzhou 215006 P. R. China

3. Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University Suzhou 215006 P. R. China

Abstract

AbstractThe regulation of the crystal structure of oxygen evolution cocatalyst (OEC) is a promising strategy for enhancing the photoelectrochemical efficiency of photoanodes. However, the prevailing regulating approach typically requires a multistep procedure, presenting a significant challenge for maintaining the structural integrity and performance of the photoanode. Herein, FeOOH with a local disordered structure is directly grown on a CdIn2S4 (CIS) photoanode via a simple and mild sonochemical approach. By modulating the localized supersaturation of Ni ions, ultrasonic cavitation induces Ni ions to participate in the nucleation and growth of FeOOH clusters to cause local disorder of FeOOH. Consequently, the local disordered FeOOH facilitates the exposure of additional active sites, boosting OER kinetics and extending charge carrier lifetimes. Finally, the optimal photoanode reaches 4.52 mA cm−2 at 1.23 VRHE, and the onset potential shifts negatively by 330 mV, exhibiting excellent performance compared with that of other metal sulfide‐based photoelectrodes reported thus far. This work provides a mild and controllable sonochemical method for regulating the phase structure of OECs to construct high‐performance photoanodes.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3