Affiliation:
1. Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
Abstract
AbstractAccurate detection of trace tetracyclines (TCs) in complex matrices is of great significance for food and environmental safety monitoring. However, traditional recognition and amplification tools exhibit poor specificity and sensitivity. Herein, a novel dual‐machine linkage nanodevice (DMLD) is proposed for the first time to achieve high‐performance analysis of TC, with a padlock aptamer component as the initiation command center, nucleic acid‐encoded multispike virus‐like Au nanoparticles (nMVANs) as the signal indicator, and cascade walkers circuit as the processor. The existence of spike vertices and interspike nanogaps in MVANs enables intense electromagnetic near‐field focusing, allowing distinct surface‐enhanced Raman scattering (SERS) activity. Moreover, through the sequential activation between multistage walker catalytic circuits, the DLMD system converts the limited TC recognition into massive engineering assemblies of SERS probes guided by DNA amplicons, resulting in synergistic enhancement of bulk plasmonic hotspot entities. The continuously guaranteed target recognition and progressively promoted signal enhancement ensure highly specific amplification analysis of TC, with a detection limit as low as 7.94 × 10−16 g mL−1. Furthermore, the reliable recoveries in real samples confirm the practicability of the proposed sensing platform, highlighting the enormous potential of intelligent nanomachines for analyzing the trace hazards in the environment and food.
Funder
National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献