Hierarchical Surface Pattern on Ni‐Free Ti‐Based Bulk Metallic Glass to Control Cell Interactions

Author:

Cai Fei‐Fan12ORCID,Blanquer Andreu3ORCID,Costa Miguel B.4ORCID,Schweiger Lukas1ORCID,Sarac Baran2ORCID,Greer A. Lindsay4ORCID,Schroers Jan5ORCID,Teichert Christian6ORCID,Nogués Carme3ORCID,Spieckermann Florian1ORCID,Eckert Jürgen12ORCID

Affiliation:

1. Department of Materials Science Chair of Materials Physics Montanuniversität Leoben Jahnstraße 12 Leoben A‐8700 Austria

2. Erich Schmid Institute of Materials Science Austrian Academy of Sciences Jahnstraße 12 Leoben A‐8700 Austria

3. Departament de Biologia Cel·lular Fisiologia i Immunologia Universitat Autònoma de Barcelona Cerdanyola del Vallès Bellaterra 08193 Spain

4. Department of Materials Science & Metallurgy University of Cambridge Cambridge CB3 0FS UK

5. Department of Mechanical Engineering and Materials Science Yale University New Haven CT 06511 USA

6. Department Physics Mechanics and Electrical Engineering Chair of Physics Montanuniversität Leoben Franz‐Josef‐Strasse 18 Leoben A‐8700 Austria

Abstract

AbstractNi‐free Ti‐based bulk metallic glasses (BMGs) are exciting materials for biomedical applications because of their outstanding biocompatibility and advantageous mechanical properties. The glassy nature of BMGs allows them to be shaped and patterned via thermoplastic forming (TPF). This work demonstrates the versatility of the TPF technique to create micro‐ and nano‐patterns and hierarchical structures on Ti40Zr10Cu34Pd14Sn2 BMG. Particularly, a hierarchical structure fabricated by a two‐step TPF process integrates 400 nm hexagonal close‐packed protrusions on 2.5 µm square protuberances while preserving the advantageous mechanical properties from the as‐cast material state. The correlations between thermal history, structure, and mechanical properties are explored. Regarding biocompatibility, Ti40Zr10Cu34Pd14Sn2 BMGs with four surface topographies (flat, micro‐patterned, nano‐patterned, and hierarchical‐structured surfaces) are investigated using Saos‐2 cell lines. Alamar Blue assay and live/dead analysis show that all tested surfaces have good cell proliferation and viability. Patterned surfaces are observed to promote the formation of longer filopodia on the edge of the cytoskeleton, leading to star‐shaped and dendritic cell morphologies compared with the flat surface. In addition to potential implant applications, TPF‐patterned Ti‐BMGs enable a high level of order and design flexibility on the surface topography, expanding the available toolbox for studying cell behavior on rigid and ordered surfaces.

Funder

Austrian Science Fund

Generalitat de Catalunya

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3