Affiliation:
1. National Base for International Science & Technology Cooperation National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion School of Chemistry Xiangtan University Xiangtan 411105 China
2. College of New Energy Ningbo University of Technology Ningbo Zhejiang 315336 China
Abstract
AbstractLi‐rich manganese‐based cathode (LRMC) has attracted intense attention to developing advanced lithium‐ion batteries with high energy density. However, LRMC is still plagued by poor cyclic stability, undesired rate capacity, and irreversible oxygen release. To address these issues, herein, a feasible polyvinylidene fluoride (PVDF)‐assisted interface modification strategy is proposed for modulating the surface architecture and electronic conductivity of LRMC by intruding the F‐doped carbon coating, spinel structure, and oxygen vacancy on the LRMC, which can greatly enhance the cyclic stability and rate capacity, and restrain the oxygen release for LRMC. As a result, the modified material delivers satisfactory cyclic performance with a capacity retention of 90.22% after 200 cycles at 1 C, an enhanced rate capacity of 153.58 mAh g−1 at 5 C and 126.32 mAh g−1 at 10 C, and an elevated initial Coulombic efficiency of 85.63%. Moreover, the thermal stability, electronic conductivity, and structure stability of LRMC are also significantly improved by the PVDF‐assisted interface modification strategy. Therefore, the strategy of simultaneously modulating the surface architecture and the electronic conductivity of LRMC provides a valuable idea to improve the comprehensive electrochemical performance of LRMC, which offers a promising reference for designing LRMC with high electrochemical performance.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献