A Temperature Sensory Leaky Integrate‐and‐Fire Artificial Neuron Based on Chitosan/PNIPAM Bilayer Volatile Complementary Resistive Switching Memristor

Author:

Sun Yanmei12ORCID,Liu Ming12,Li Bingxun12

Affiliation:

1. School of Electronic Engineering Heilongjiang University Harbin 150080 China

2. Heilongjiang Provincial Key Laboratory of Micro‐nano Sensitive Devices and Systems Heilongjiang University Harbin 150080 China

Abstract

AbstractThe presence of neurons is crucial in neuromorphic computing systems as they play a vital role in modulating the strength of synapses through the release of either excitatory or inhibitory stimuli. Hence, the development of sensory neurons plays a pivotal role in broadening the scope of brain‐inspired neural computing. The present study introduces an artificial sensory neuron, which is constructed using a temperature‐sensitive volatile complementary resistance switch memristor based on the functional layer of the chitosan/PNIPAM bilayer. The resistive switching behavior arises from the formation and ionization of oxygen vacancy filaments, whereby the threshold voltage and low resistive resistance of the device exhibit a temperature‐dependent increase within the range of 290–410 K. A functional replication of a neuron with leaky integration and firing has been successfully developed, effectively simulating essential biological functions such as firing triggered by threshold, refractory period implementation, and modulation of spiking frequency. The artificial sensory neuron exhibits characteristics similar to those of leaky integrated firing neurons that receive temperature inputs. It has the potential to control the output frequency and amplitude under varying temperature conditions, making it suitable for temperature‐sensing applications. This study presents a potential hardware implementation for developing efficient artificial intelligence systems that can support temperature detections.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3