Nano‐Si for On‐Demand H2 Production: Optimization of Yield and Real‐Time Visualization of Si─H2O Reaction Using Liquid‐Phase Transmission Electron Microscopy

Author:

Mitra Arijit1ORCID,Kuo Hsueh‐Yuan1,Huang Jun‐Han1,Rachel Gunalan1,Chu Wen‐Huei2,Chiu Wei‐Cheng3,Kuo Jenn‐Kun4,Liu Chuan‐Pu15ORCID

Affiliation:

1. Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan

2. Core Facility Center National Cheng Kung University Tainan 701 Taiwan

3. Green Energy Technology Research Center Kun Shan University Tainan 710303 Taiwan

4. Department of Mechanical and Electro‐Mechanical Engineering National Sun Yat‐sen University Kaohsiung 804 Taiwan

5. Hierarchical Green‐Energy Materials (Hi‐GEM) Research Center National Cheng Kung University Tainan 701 Taiwan

Abstract

AbstractHydrogen (H2), the most abundant element in the universe, has the potential to address the challenges of energy security and climate change. However, due to the lack of a safe and efficient method for storing and delivering hydrogen, its practical application is still in its infancy stages. To overcome this challenge, a promising solution is demonstrated in the form of on‐demand production of H2 using nano‐Silicon (Si) powders. The method offers instantaneous production of H2, yielding a volume of 1.3 L per gram of Si at room temperature. Moreover, the H2 production yield and the rate can be effectively controlled by adjusting the reaction pH value and temperatures. Additionally, liquid‐phase transmission electron microscopy (LPTEM) is utilized in situ to demonstrate the entire reaction in real‐time, wherein H2 bubble formation is observed and illustrated the gradual conversion of crystalline Si particles into amorphous oxides. Moreover, it is confirmed that the purity of the generated gas is 99.5% using gas chromatography mass spectrometry (GC‐MS). These findings suggest a viable option for instant H2 production in portable fuel cells using Si cartridges or pellets.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3