Bioinspired Synaptic Branched Network within Quasi‐Solid Polymer Electrolyte for High‐Performance Microsupercapacitors

Author:

Lee Dawoon12ORCID,Yang Mino3,Choi U. Hyeok4ORCID,Kim Jaekyun12ORCID

Affiliation:

1. Department of Photonics and Nanoelectronics Hanyang University Ansan 15588 Republic of Korea

2. BK21 FOUR ERICA‐ACE Center Hanyang University Ansan 15588 Republic of Korea

3. Korea Basic Science Insititute (Seoul) Seoul 02841 Republic of Korea

4. Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea

Abstract

AbstractThe branched network‐driven ion solvating quasi‐solid polymer electrolytes (QSPEs) are prepared via one‐step photochemical reaction. A poly(ethylene glycol diacrylate) (PEGDA) is combined with an ion‐conducting solvate ionic liquid (SIL), where tetraglyme (TEGDME), which acts like interneuron in the human brain and creates branching network points, is mixed with EMIM‐NTf2 and Li‐NTf2. The QSPE exhibits a unique gyrified morphology, inspired by the cortical surface of human brain, and features well‐refined nano‐scale ion channels. This human‐mimicking method offers excellent ion transport capabilities through a synaptic branched network with high ionic conductivity (σDC ≈ 1.8 mS cm−1 at 298 K), high dielectric constant (εs ≈ 125 at 298 K), and strong ion solvation ability, in addition to superior mechanical flexibility. Furthermore, the interdigitated microsupercapacitors (MSCs) based on the QSPE present excellent electrochemical performance of high energy (E  =  5.37 µWh cm−2) and power density (P  =  2.2 mW cm−2), long‐term cycle stability (≈94% retention after 48 000 cycles), and mechanical stability (>94% retention after continuous bending and compressing deformation). Moreover, these MSC devices have flame‐retarding properties and operate effectively in air and water across a wide temperature range (275 to 370 K), offering a promising foundation for high‐performance, stable next‐generation all‐solid‐state energy storage devices.

Funder

Ministry of Science and ICT, South Korea

Korea Basic Science Institute

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3