Construction of pH‐Sensitive Nanovaccines Encapsulating Tumor Cell Lysates and Immune Adjuvants for Breast Cancer Therapy

Author:

Ding Yuan1,Yang Jiali2,Wei Huiye1,Wang Jiachen1,Huang Sicong1,Yang Shuguang1,Guo Yu2,Li Bo3ORCID,Shuai Xintao1ORCID

Affiliation:

1. School of Material Science and Engineering Sun Yat‐sen University 510275 Guangzhou China

2. Department of Oncology and General Surgery The First Affiliated Hospital of Sun Yat‐sen University 510080 Guangzhou China

3. Nanomedicine Research Center The Third Affiliated Hospital of Sun Yat‐sen University 510630 Guangzhou China

Abstract

AbstractThe current immunotherapy strategies for triple negative breast cancer (TNBC) are greatly limited due to the immunosuppressive tumor microenvironment (TME). Immunization with cancer vaccines composed of tumor cell lysates (TCL) can induce an effective antitumor immune response. However, this approach also has the disadvantages of inefficient antigen delivery to the tumor tissues and the limited immune response elicited by single‐antigen vaccines. To overcome these limitations, a pH‐sensitive nanocalcium carbonate (CaCO3) carrier loaded with TCL and immune adjuvant CpG (CpG oligodeoxynucleotide 1826) is herein constructed for TNBC immunotherapy. This tailor‐made nanovaccine, termed CaCO3@TCL/CpG, not only neutralizes the acidic TME through the consumption of lactate by CaCO3, which increases the proportion of the M1/M2 macrophages and promotes infiltration of effector immune cells but also activates the dendritic cells in the tumor tissues and recruits cytotoxic T cells to further kill the tumor cells. In vivo fluorescence imaging study shows that the pegylated nanovaccine could stay longer in the blood circulation and extravasate preferentially into tumor site. Besides, the nanovaccine exhibits high cytotoxicity in 4T1 cells and significantly inhibits tumor growth of tumor‐bearing mice. Overall, this pH‐sensitive nanovaccine is a promising nanoplatform for enhanced immunotherapy of TNBC.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3