Affiliation:
1. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua Zhejiang 321004 P. R. China
2. Zhejiang Institute of Photoelectronic Zhejiang Normal University Jinhua Zhejiang 321004 P. R. China
Abstract
AbstractHalide perovskites have garnered significant attention for their unique optoelectronic properties in solar‐to‐fuel conversions. However, the efficiency of halide perovskites in the field of photocatalytic CO2 reduction is largely limited by serious charge recombination and a lack of efficient active sites. In this work, a rubidium (Rb) doped Cs2AgBiBr6 (Rb:CABB) hierarchical microsphere is developed for photocatalytic CO2 reduction. Experimental and theoretical analysis discloses that partially substituting Rb+ for Ag+ can effectively modulate the electronic structure of CABB, favoring charge separation and making adjacent Bi atoms an electron‐rich active site. Further investigations indicated that Rb doping also reduces the energy barriers of the rate‐determining step in CO2 reduction. As a result, Rb:CABB demonstrated an enhanced CO yield compared to its undoped counterpart. This work presents a promising approach to optimizing the electronic structures of photocatalysts and paving a new way for exploring halide perovskites for photocatalytic CO2 reduction.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Zhejiang Normal University