Progress and Challenges in Tumor Ferroptosis Treatment Strategies: A Comprehensive Review of Metal Complexes and Nanomedicine

Author:

Su Yanhong12,Liu Bing1,Wang Binghan1,Chan Leung1,Xiong Chan1,Lu Ligong1,Zhang Xuanjun23,Zhan Meixiao1ORCID,He Weiling14

Affiliation:

1. Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University) Zhuhai Guangdong 519000 P. R. China

2. Faculty of Health Sciences University of Macau Macau SAR 999078 China

3. MOE Frontiers Science Centre for Precision Oncology University of Macau Macau SAR 999078 China

4. Department of Gastrointestinal Surgery Xiang'an Hospital of Xiamen University School of Medicine Xiamen University Xiamen Fujian 361000 China

Abstract

AbstractFerroptosis is a new form of regulated cell death featuring iron‐dependent lipid peroxides accumulation to kill tumor cells. A growing body of evidence has shown the potential of ferroptosis‐based cancer therapy in eradicating refractory malignancies that are resistant to apoptosis‐based conventional therapies. In recent years, studies have reported a number of ferroptosis inducers that can increase the vulnerability of tumor cells to ferroptosis by regulating ferroptosis‐related signaling pathways. Encouraged by the rapid development of ferroptosis‐driven cancer therapies, interdisciplinary fields that combine ferroptosis, pharmaceutical chemistry, and nanotechnology are focused. First, the prerequisites and metabolic pathways for ferroptosis are briefly introduced. Then, in detail emerging ferroptosis inducers designed to boost ferroptosis‐induced tumor therapy, including metal complexes, metal‐based nanoparticles, and metal‐free nanoparticles are summarized. Subsequently, the application of synergistic strategies that combine ferroptosis with apoptosis and other regulated cell death for cancer therapy, with emphasis on the use of both cuproptosis and ferroptosis to induce redox dysregulation in tumor and intracellular bimetallic copper/iron metabolism disorders during tumor treatment is discussed. Finally, challenges associated with clinical translation and potential future directions for potentiating cancer ferroptosis therapies are highlighted.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3