Modulation of Vacancy Defects and Texture for High Performance n‐Type Bi2Te3 via High Energy Refinement

Author:

Zhou Jing12,Feng Jianghe1,Li Hao1,Liu Duo1,Qiu Guojuan1,Qiu Feng1,Li Juan1,Luo Zhong‐Zhen23,Zou Zhigang23,Sun Rong1,Liu Ruiheng1ORCID

Affiliation:

1. Shenzhen Institute of Advanced Electronic Materials Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

2. Key Laboratory of Eco‐materials Advanced Technology College of Materials Science and Engineering Fuzhou University Fuzhou 350108 P. R. China

3. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China

Abstract

AbstractThe carrier concentration in n‐type layered Bi2Te3‐based thermoelectric (TE) material is significantly impacted by the donor‐like effect, which would be further intensified by the nonbasal slip during grain refinement of crushing, milling, and deformation, inducing a big challenge to improve its TE performance and mechanical property simultaneously. In this work, high‐energy refinement and hot‐pressing are used to stabilize the carrier concentration due to the facilitated recovery of cation and anion vacancies. Based on this, combined with SbI3 doping and hot deformation, the optimized carrier concentration and high texture degree are simultaneously realized. As a result, a peak figure of merit (zT) of 1.14 at 323 K for Bi2Te2.7Se0.3 + 0.05 wt.% SbI3 sample with the high bending strength of 100 Mpa is obtained. Furthermore, a 31‐couple thermoelectric cooling device consisted of n‐type Bi2Te2.7Se0.3 + 0.05 wt.% SbI3 and commercial p‐type Bi0.5Sb1.5Te3 legs is fabricated, which generates the large maximum temperature difference (ΔTmax) of 85 K at a hot‐side temperature of 343 K. Thus, the discovery of recovery effect in high energy refinement and hot‐pressing has significant implications for improving TE performance and mechanical strength of n‐type Bi2Te3, thereby promoting its applications in harsh conditions.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3