The Stokes–Einstein–Sutherland Equation at the Nanoscale Revisited

Author:

Baer Andreas1ORCID,Wawra Simon E.12,Bielmeier Kristina12,Uttinger Maximilian J.12,Smith David M.3ORCID,Peukert Wolfgang12ORCID,Walter Johannes12ORCID,Smith Ana‐Sunčana34ORCID

Affiliation:

1. Department of Physics PULS Group Interdisciplinary Center for Nanostructured Films (IZNF) Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Cauerstr. 3 91058 Erlangen Germany

2. Institute of Particle Technology (LFG) Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Cauerstr. 4 91058 Erlangen Germany

3. Interdisciplinary Center for Functional Particle Systems (FPS) Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Haberstr. 9a 91058 Erlangen Germany

4. Division of Physical Chemistry Group of Computational Life Sciences, Ruđer Bošković Institute Bijenička 54 Zagreb 10000 Croatia

Abstract

AbstractThe Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle‐solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C60in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long‐standing discussion on the validity and limits of the SES equation at the molecular scale.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3