Autonomous Underwater Self‐Healable Adhesive Elastomers Enabled by Dynamical Hydrophobic Phase‐Separated Microdomains

Author:

Wu Xiankun1,Li Min1,Li Haonan1,Gao Huihui1,Wang Zhongkai1ORCID,Wang Zhong1ORCID

Affiliation:

1. Biomass Molecular Engineering Center Anhui Provincial Engineering Center for High Performance Biobased Nylons School of Materials and Chemistry Anhui Agricultural University Hefei Anhui 230036 China

Abstract

AbstractHigh‐efficient underwater self‐healing materials with reliable mechanical attributes hold great promise for applications in ocean explorations and diverse underwater operations. Nevertheless, achieving these functions in aquatic environments is challenging because the recombination of dynamic interactions will suffer from resistance to interfacial water molecules. Herein, an ultra‐robust and all‐environment stable self‐healable polyurethane‐amide supramolecular elastomer is developed through rational engineering of hydrophobic domains and multistrength hydrogen bonding interactions to provide mechanical and healing compatibility as well as efficient suppression of water ingress. The coupling of hydrophobic chains and hierarchical hydrogen bonds within a multiphase matrix self‐assemble to generate dynamical hydrophobic hard‐phase microdomains, which synergistically realize high stretchability (1601%), extreme toughness (87.1 MJ m−3), and outstanding capability to autonomous self‐healing in various harsh aqueous conditions with an efficiency of 58% and healed strength of 12.7 MPa underwater. Furthermore, the self‐aggregation of hydrophobic clusters with sufficient dynamic interactions endows the resultant elastomer with effective instantaneous adhesion (6.2 MPa, 941.9 N m−1) in extremely harsh aqueous conditions. It is revealed that the dynamical hydrophobic hard‐phase microdomain composed of hydrophobic barriers and cooperative reversible interactions allows for regulating its mechanical enhancement and underwater self‐healing efficiency, enabling the elastomers as intelligent sealing devices in marine applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3