Defect Engineering Centrosymmetric 2D Material Flexocatalysts

Author:

Chen Yu‐Ching12,Chen Po‐Han1,Liao Yin‐Song13,Chou Jyh‐Pin4,Wu Jyh Ming15ORCID

Affiliation:

1. Department of Materials Science and Engineering National Tsing Hua University 101 Section 2 Kuang Fu Road Hsinchu 300 Taiwan

2. Ph.D. Program in Prospective Functional Materials Industry National Tsing Hua University 101 Section 2 Kuang Fu Road Hsinchu 300 Taiwan

3. Tsing Hua Interdisciplinary Program National Tsing Hua University 101 Section 2 Kuang Fu Road Hsinchu 300 Taiwan

4. Department of Physics National Changhua University of Education No. 1 Jin‐De Road Changhua 500 Taiwan

5. High Entropy Materials Center National Tsing Hua University 101 Section 2 Kuang Fu Road Hsinchu 300 Taiwan

Abstract

AbstractIn this study, the flexoelectric characteristics of 2D TiO2 nanosheets are examined. The theoretical calculations and experimental results reveal an excellent strain‐induced flexoelectric potential (flexopotential) by an effective defect engineering strategy, which suppresses the recombination of electron–hole pairs, thus substantially improving the catalytic activity of the TiO2 nanosheets in the degradation of Rhodamine B dye and the hydrogen evolution reaction in a dark environment. The results indicate that strain‐induced bandgap reduction enhances the catalytic activity of the TiO2 nanosheets. In addition, the TiO2 nanosheets degraded Rhodamine B, with kobs being ≈1.5 × 10−2 min−1 in dark, while TiO2 nanoparticles show only an adsorption effect. 2D TiO2 nanosheets achieve a hydrogen production rate of 137.9 µmol g−1 h−1 under a dark environment, 197% higher than those of TiO2 nanoparticles (70.1 µmol g−1 h−1). The flexopotential of the TiO2 nanosheets is enhanced by increasing the bending moment, with excellent flexopotential along the y‐axis. Density functional theory is used to identify the stress‐induced bandgap reduction and oxygen vacancy formation, which results in the self‐dissociation of H2O on the surface of the TiO in the dark. The present findings provide novel insights into the role of TiO2 flexocatalysis in electrochemical reactions.

Funder

National Science and Technology Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3