Engineering the Physical Microenvironment into Neural Organoids for Neurogenesis and Neurodevelopment

Author:

Li Minghui12ORCID,Sun Heng1,Hou Zongkun3,Hao Shilei1,Jin Liang1,Wang Bochu1

Affiliation:

1. Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400045 China

2. Southwest Hospital/Southwest Eye Hospital Third Military Medical University (Army Medical University) Chongqing 400038 China

3. Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province Engineering Research Center of Cellular Immunotherapy of Guizhou Province School of Biology and Engineering/School of Basic Medical Sciences Guizhou Medical University Guiyang 550025 China

Abstract

AbstractUnderstanding the signals from the physical microenvironment is critical for deciphering the processes of neurogenesis and neurodevelopment. The discovery of how surrounding physical signals shape human developing neurons is hindered by the bottleneck of conventional cell culture and animal models. Notwithstanding neural organoids provide a promising platform for recapitulating human neurogenesis and neurodevelopment, building neuronal physical microenvironment that accurately mimics the native neurophysical features is largely ignored in current organoid technologies. Here, it is discussed how the physical microenvironment modulates critical events during the periods of neurogenesis and neurodevelopment, such as neural stem cell fates, neural tube closure, neuronal migration, axonal guidance, optic cup formation, and cortical folding. Although animal models are widely used to investigate the impacts of physical factors on neurodevelopment and neuropathy, the important roles of human stem cell‐derived neural organoids in this field are particularly highlighted. Considering the great promise of human organoids, building neural organoid microenvironments with mechanical forces, electrophysiological microsystems, and light manipulation will help to fully understand the physical cues in neurodevelopmental processes. Neural organoids combined with cutting‐edge techniques, such as advanced atomic force microscopes, microrobots, and structural color biomaterials might promote the development of neural organoid‐based research and neuroscience.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing Municipality

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3