Improving Crystallinity and Out‐of‐Plane Orientation in Quasi‐2D Ruddlesden‐Popper Perovskite by Fluorinated Organic Salt for Light‐Emitting Diodes

Author:

He Bingchen1,Liu Tanghao12,Wang Chenyue3,Wen Zhaorui1,Sun Bo3,Wen Wen3,Xing Guichuan1,Gao Xingyu3,Chen Shi1ORCID

Affiliation:

1. Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Avenida da Universidade Taipa Macau 999078 China

2. Department of Physics Hong Kong Baptist University Hong Kong SAR 999077 China

3. Shanghai Synchrotron Radiation Facility (SSRF) Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China

Abstract

AbstractFluoro‐substituted aromatic alkylammonium spacer cations are found effective to improve the performance of quasi‐2D perovskite light‐emitting diodes (PeLEDs). The fluorine substitution is generally attributed to the defect passivation, quantum well width control, and energy level adjustments. However, the substituted cations can also affect the crystallization process but is not thoroughly studied. Herein, a comparison study is carried out using bare PEA cation and three different fluoro‐substituted PEA (x‐F‐PEA, x = o, ortho; m, meta; p, para) cations to investigate the impacts of different substitution sites on the perovskite crystallization and orientations. By using GIWAXS, p‐F‐PEA cation is found to induce the strongest preferential out‐of‐plane orientations with the best crystallinity in quasi‐2D perovskite. Using dynamic light scattering (DLS) methods, larger colloidal particles (630 nm) are revealed in p‐F‐PEA precursor solutions than the PEA cations (350 nm). The larger particles can accelerate the crystallization process and induce out‐of‐plane orientation from increased dipole–dipole interaction. The transient absorption measurement confirms longer radiative recombination lifetime, proving beneficial effect of p‐F‐PEA cation. As a result, the fabricated p‐F‐PEA‐based PeLEDs achieved the highest EQE of 15.2%, which is higher than those of PEA‐ (8.8%), o‐F‐PEA‐ (4.3%), and m‐F‐PEA‐based (10.3%) PeLEDs.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3