Living and Injectable Porous Hydrogel Microsphere with Paracrine Activity for Cartilage Regeneration

Author:

Li Xingchen1ORCID,Li Xiaoxiao1,Yang Jielai1,Lin Jiawei1,Zhu Yuan1,Xu Xiangyang1ORCID,Cui Wenguo1ORCID

Affiliation:

1. Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China

Abstract

AbstractParacrine is an important mechanism in mesenchymal stem cells (MSCs) that promotes tissue regeneration. However, anoikis is attributed to unsuitable adhesion microenvironment hindered this paracrine effect. In this study, a living and injectable porous hydrogel microsphere with long‐term paracrine activity is constructed via the freeze‐drying microfluidic technology and the incorporation of platelet‐derived growth factor‐BB (PDGF‐BB) and exogenous MSCs. Benefiting from the porous structure and superior mechanical property of methacrylate gelatin (GelMA) hydrogel microspheres (GMs), exogenous stem cells are able to adhere and proliferate on GMs, thereby facilitating cell‐to‐extracellular matrix (ECM) and cell‐to‐cell interactions and enhancing paracrine effect. Furthermore, the sustained release of PDGF‐BB can recruit endogenous MSCs to prolong the paracrine activity of the living GMs. In vitro and in vivo experiments validated that the living GMs exhibit superior secretion properties and anti‐inflammatory efficacy and can attenuate osteoarthritis (OA) progression by favoring the adherent microenvironment and utilizing the synergistic effect of exogenous and endogenous MSCs. Overall, a living injectable porous hydrogel microsphere that can enhance the paracrine activity of stem cells is fabricated and anticipated to hold the potential of future clinical translation in OA and other diseases.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3