Leveraging Curvature on N‐Doped Carbon Materials for Hydrogen Storage

Author:

Rice Peter S.1ORCID,Lee Gabriel1,Schwartz Brayden1,Autrey Tom1ORCID,Ginovska Bojana1ORCID

Affiliation:

1. Physical and Computational Sciences Directorate Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA

Abstract

AbstractCarbon sorbent materials have shown great promise for solid‐state hydrogen (H2) storage. Modification of these materials with nitrogen (N) dopants has been undertaken to develop materials that can store H2 at ambient temperatures. In this work density functional theory (DFT) calculations are used to systematically probe the influence of curvature on the stability and activity of undoped and N‐doped carbon materials toward H binding. Specifically, four models of carbon materials are used: graphene, [5,5] carbon nanotube, [5,5] D5d‐C120, and C60, to extract and correlate the thermodynamic properties of active sites with varying degrees of sp2 hybridization (curvature). From the calculations and analysis, it is found that graphitic N‐doping is thermodynamically favored on more pyramidal sites with increased curvature. In contrast, it is found that the hydrogen binding energy is weakly affected by curvature and is dominated by electronic effects induced by N‐doping. These findings highlight the importance of modulating the heteroatom doping configuration and the lattice topology when developing materials for H2 storage.

Funder

U.S. Department of Energy

Basic Energy Sciences

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3