In Situ Single Particle Reconstruction Reveals 3D Evolution of PtNi Nanocatalysts During Heating

Author:

Wang Yi‐Chi123,Slater Thomas J. A.4,Leteba Gerard M.5,Lang Candace I.5,Wang Zhong Lin16,Haigh Sarah J.2ORCID

Affiliation:

1. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 China

2. Department of Materials University of Manchester Manchester M13 9PL UK

3. School of Materials Science and Engineering Tsinghua University Beijing 100084 China

4. Cardiff Catalysis Institute School of Chemistry Cardiff University Cardiff CF10 3AT UK

5. Centre for Materials Engineering Department of Mechanical Engineering University of Cape Town Cape Town 7700 South Africa

6. School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332‐0245 USA

Abstract

AbstractTailoring nanoparticles’ composition and morphology is of particular interest for improving their performance for catalysis. A challenge of this approach is that the nanoparticles’ optimized initial structure often changes during use. Visualizing the three dimensional (3D) structural transformation in situ is therefore critical, but often prohibitively difficult experimentally. Although electron tomography provides opportunities for 3D imaging, restrictions in the tilt range of in situ holders together with electron dose considerations limit the possibilities for in situ electron tomography studies. Here, an in situ 3D imaging methodology is presented using single particle reconstruction (SPR) that allows 3D reconstruction of nanoparticles with controlled electron dose and without tilting the microscope stage. This in situ SPR methodology is employed to investigate the restructuring and elemental redistribution within a population of PtNi nanoparticles at elevated temperatures. The atomic structure of PtNi is further examined and a heat‐induced transition is found from a disordered to an ordered phase. Changes in structure and elemental distribution are linked to a loss of catalytic activity in the oxygen reduction reaction. The in situ SPR methodology employed here can be extended to a wide range of in situ studies employing not only heating, but gaseous, aqueous, or electrochemical environments to reveal in‐operando nanoparticle evolution in 3D.

Funder

National Natural Science Foundation of China

Engineering and Physical Sciences Research Council

European Research Council

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3