Vasculogenic mimicry regulates immune infiltration and mutational status of the tumor microenvironment in breast cancer to influence tumor prognosis

Author:

Zheng Shurong1,Guo Guilong1,Yang Zhi1,Lu Yiqiao1,Lu Kangkang1,Fu Weida1,Huang Qidi1ORCID

Affiliation:

1. Department of Breast surgery First Affiliated Hospital of Wenzhou Medical University Wenzhou China

Abstract

AbstractBackgroundVasculogenic mimicry (VM) refers to the direct formation of microcirculatory ducts by invasive malignant tumors via cellular phenotypic transformation. However, there is a lack of VM‐based biomarkers for breast cancer.MethodsWe obtained transcriptomic expression data, single cell sequencing data, and clinical data of patients from The Cancer Genome Atlas Program (TCGA) database and GEO database, performed single cell analysis to obtain specific type annotations of breast cancer cells and analyzed their spatial expression analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analyses as well as Gene Set Enrichment Analysis (GSEA) analyses were performed to clarify the biological pathways and tumor functional enrichment relationships of the major expressed genes of VM in the breast cancer bulk data specimens. VM biomarkers were constructed. Meanwhile, the relationship between VM scores and tumor immune infiltration in breast cancer was analyzed using MCPcounter and ssGSEA methods. In addition, we assessed the specific relationship between NDRG1, a key VM gene in breast cancer, and tumor colonization, adhesion and invasion by biological experiments in breast cancer cell lines.ResultsThe main cell types of breast cancer (BRCA) samples were annotated by single cell transcriptome analysis. Most of the VM‐high group was present in epithelial cells, whereas the VM‐low group was present in immune and stromal cells. Multiple tumor pathways such as TGFβ p53 and MAPK were closely associated with VM‐mediated breast cancer infiltration and invasion. A prognostic model of breast cancer based on VM key genes was constituted. Prognostic stratification of breast cancer was successfully achieved for the TCGA‐BRCA and GSE58812 datasets. Through immune infiltration analysis, we found that differential expression of VM markers was associated with multiple immune cell regulation. In MDA‐MB‐231 and MDA‐MB‐453 cell lines, we found that the NDRG1 gene significantly promoted colony formation of breast cancer cells.ConclusionOur constructed VM‐related gene‐based model of breast cancer biology holds promise for prognostic prediction and patient stratification of breast cancer. This may provide a potentially clinically valuable aid in promoting a deeper understanding of the biological regulation of VM in breast cancer and exploring the specific mechanisms of tumor angiogenesis and breast cancer development.

Funder

Science and Technology Plan Project of Wenzhou Municipality

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3