A review on photocatalytic degradation of aromatic organoarsenic compounds in aqueous environment using nanomaterials

Author:

Emmanuel Stephen Sunday1ORCID,Adesibikan Ademidun Adeola1

Affiliation:

1. Department of Industrial Chemistry, Faculty of Physical Sciences University of Ilorin Ilorin Nigeria

Abstract

AbstractAromatic organoarsenic compounds (AOCs) have proven to be both a boon and a curse by boosting profit maximization in livestock production and at the same time contributing to the pollution of water bodies, the chief cornerstone of the ecosystem. Interestingly, photocatalytic degradation using nanomaterials has emerged as an effective method to mitigate AOC pollution. Thus, this study aims to review and analyze original research works directed toward the photocatalytic degradation of AOC in the aqueous environment. In this study, the photocatalytic degradation efficiency of various nanomaterials is investigated for different aromatic organoarsenic compounds. In addition, an empirical analysis was conducted on the impact of electron trapping and radical scavengers. Furthermore, photocatalytic degradation kinetics and mechanisms were pragmatically discussed. Also, recyclability, stability, and real‐life applicability were empirically evaluated. According to this review, most nanomaterial materials had maximal photocatalytic degradation efficiencies of >75% for most AOCs within an average time of 6–330 min. The radical scavenging study revealed that OH and O2 mechanistically play a major role in AOC degradation than electrons and holes. Additionally, it was shown that expended photocatalysts can be eluted mostly with H2O/NaOH and recycled up to 3–6 rounds with a degradation efficiency of >80% in most cases while maintaining their original structural integrity. This indicates that the method has the potential to be both environmentally friendly and industrially scalable. Ultimately, research gaps were highlighted, which can help researchers identify future research hotspots and open doors for technique advancement.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3