Metabotropic glutamate receptor 5‐mediated inhibition of inward‐rectifying K+ channel 4.1 contributes to orofacial ectopic mechanical allodynia following inferior alveolar nerve transection in male mice

Author:

Li Yi‐Ke12,Zhang Yan‐Yan12,Lin Jiu12,Liu Ya‐Jing12,Li Yue‐Ling12,Feng Yu‐Heng12,Zhao Jia‐Shuo12,Zhou Cheng3,Liu Fei12ORCID,Shen Jie‐Fei12

Affiliation:

1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology Sichuan University Chengdu China

2. Department of Prosthodontics, West China Hospital of Stomatology Sichuan University Chengdu China

3. Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center West China Hospital of Sichuan University Chengdu China

Abstract

AbstractInward‐rectifying K+ channel 4.1 (Kir4.1), which regulates the electrophysiological properties of neurons and glia by affecting K+ homeostasis, plays a critical role in neuropathic pain. Metabotropic glutamate receptor 5 (mGluR5) regulates the expression of Kir4.1 in retinal Müller cells. However, the role of Kir4.1 and its expressional regulatory mechanisms underlying orofacial ectopic allodynia remain unclear. This study aimed to investigate the biological roles of Kir4.1 and mGluR5 in the trigeminal ganglion (TG) in orofacial ectopic mechanical allodynia and the role of mGluR5 in Kir4.1 regulation. An animal model of nerve injury was established via inferior alveolar nerve transection (IANX) in male C57BL/6J mice. Behavioral tests indicated that mechanical allodynia in the ipsilateral whisker pad lasted at least 14 days after IANX surgery and was alleviated by the overexpression of Kir4.1 in the TG, as well as intraganglionic injection of an mGluR5 antagonist (MPEP hydrochloride) or a protein kinase C (PKC) inhibitor (chelerythrine chloride); Conditional knockdown of the Kir4.1 gene downregulated mechanical thresholds in the whisker pad. Double immunostaining revealed that Kir4.1 and mGluR5 were co‐expressed in satellite glial cells in the TG. IANX downregulated Kir4.1 and upregulated mGluR5 and phosphorylated PKC (p‐PKC) in the TG; Inhibition of mGluR5 reversed the changes in Kir4.1 and p‐PKC that were induced by IANX; Inhibition of PKC activation reversed the downregulation of Kir4.1 expression caused by IANX (p < .05). In conclusion, activation of mGluR5 in the TG after IANX contributed to orofacial ectopic mechanical allodynia by suppressing Kir4.1 via the PKC signaling pathway.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Sichuan Province

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3