Accurate and Data‐Efficient Micro X‐ray Diffraction Phase Identification Using Multitask Learning: Application to Hydrothermal Fluids

Author:

Li Yanfei1,Liu Juejing12,Zhao Xiaodong1,Liu Wenjun3,Geng Tong4,Li Ang1ORCID,Zhang Xin1ORCID

Affiliation:

1. Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland WA 99354 USA

2. Materials Science and Engineering Program Washington State University Pullman WA 99164 USA

3. Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA

4. Department of Electrical and Computer Engineering University of Rochester Rochester NY 14627 USA

Abstract

Traditional analysis of highly distorted micro X‐ray diffraction (μ‐XRD) patterns from hydrothermal fluid environments is a time‐consuming process, often requiring substantial data preprocessing and labeled experimental data. Herein, the potential of deep learning with a multitask learning (MTL) architecture to overcome these limitations is demonstrated. MTL models are trained to identify phase information in μ‐XRD patterns, minimizing the need for labeled experimental data and masking preprocessing steps. Notably, MTL models show superior accuracy compared to binary classification convolutional neural networks. Additionally, introducing a tailored cross‐entropy loss function improves MTL model performance. Most significantly, MTL models tuned to analyze raw and unmasked XRD patterns achieve close performance to models analyzing preprocessed data, with minimal accuracy differences. This work indicates that advanced deep learning architectures like MTL can automate arduous data handling tasks, streamline the analysis of distorted XRD patterns, and reduce the reliance on labor‐intensive experimental datasets.

Funder

Pacific Northwest National Laboratory

Advanced Research Projects Agency

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3