Investigating the role of Purkinje fibers and synaptic connectivity in balance regulation through comprehensive ultrastructural and immunohistochemical analysis of the donkey's (Equus asinus) cerebellum

Author:

Elarab Samar M. Ez1,Alsafy Mohamed A.M.2ORCID,El‐Gendy Samir A.A.2,El‐Bakary Neveen E.R.3,Elsayed Noreldin Ahmed4,Rashwan Ahmed M.56

Affiliation:

1. Department of Histology and Cytology, Faculty of Veterinary Medicine Alexandria University Alexandria Egypt

2. Department of Anatomy and Embryology, Faculty of Veterinary Medicine Alexandria University Alexandria Egypt

3. Department of Zoology, Faculty of Science Damietta University New Damietta Egypt

4. Histology and Cytology Department, Faculty of Veterinary Medicine Damanhour University Damanhour Egypt

5. Department of Anatomy and Embryology, Faculty of Veterinary Medicine Damanhour University Damanhour Egypt

6. Department of Life Science Frontiers Kyoto University Kyoto Japan

Abstract

AbstractThe donkey's extraordinary capacity to endure substantial loads over long distances while maintaining equilibrium suggests a distinctive cerebellar architecture specialized in balance regulation. Consequently, our study aims to investigate the intricate histophysiology of the donkey's cerebellum using advanced ultrastructural and immunohistochemical methodologies to comprehend the mechanisms that govern this exceptional ability. This study represents the pioneering investigation to comprehensively describe the ultrastructure and immunohistochemistry within the donkey cerebellum. Five adult donkeys' cerebella were utilized for the study, employing stains such as hematoxylin, eosin, and toluidine blue to facilitate a comprehensive histological examination. For immunohistochemical investigation, synaptophysin (SP), calretinin, and glial fibrillary acidic protein were used and evaluated by the Image J software. Furthermore, a double immunofluorescence staining of SP and neuron‐specific enolase (NSE) was performed to highlight the co‐localization of these markers and explore their potential contribution to synaptic function within the donkey cerebellum. This investigation aims to understand their possible roles in regulating neuronal activity and synaptic connectivity. We observed co‐expression of SP and NSE in the donkey cerebellum, which emphasizes the crucial role of efficient energy utilization for motor coordination and balance, highlighting the interdependence of synaptic function and energy metabolism. The Purkinje cells were situated in the intermediate zone of the cerebellum cortex, known as the Purkinje cell layer. Characteristically, the Purkinje cell's bodies exhibited a distinct pear‐like shape. The cross‐section area of the Purkinje cells was 107.7 ± 0.2 µm2, and the Purkinje cell nucleus was 95.7 ± 0.1 µm2. The length and diameter of the Purkinje cells were 36.4 × 23.4 µm. By scanning electron microscopy, the body of the Purkinje cell looked like a triangular or oval with a meandrous outer surface. The dendrites appeared to have small spines. The Purkinje cells' cytoplasm was rich with mitochondria, rough endoplasmic reticulum, ribosomes, Golgi apparatus, multivesicular bodies, and lysosomes. Purkinje cell dendrites were discovered in the molecular layer, resembling trees. This study sheds light on the anatomical and cellular characteristics underlying the donkey's exceptional balance‐maintaining abilities.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3