Generalized single index modeling of longitudinal data with multiple binary responses

Author:

Tian Zibo1ORCID,Qiu Peihua1ORCID

Affiliation:

1. Department of Biostatistics University of Florida Gainesville Florida USA

Abstract

In health and clinical research, medical indices (eg, BMI) are commonly used for monitoring and/or predicting health outcomes of interest. While single‐index modeling can be used to construct such indices, methods to use single‐index models for analyzing longitudinal data with multiple correlated binary responses are underdeveloped, although there are abundant applications with such data (eg, prediction of multiple medical conditions based on longitudinally observed disease risk factors). This article aims to fill the gap by proposing a generalized single‐index model that can incorporate multiple single indices and mixed effects for describing observed longitudinal data of multiple binary responses. Compared to the existing methods focusing on constructing marginal models for each response, the proposed method can make use of the correlation information in the observed data about different responses when estimating different single indices for predicting response variables. Estimation of the proposed model is achieved by using a local linear kernel smoothing procedure, together with methods designed specifically for estimating single‐index models and traditional methods for estimating generalized linear mixed models. Numerical studies show that the proposed method is effective in various cases considered. It is also demonstrated using a dataset from the English Longitudinal Study of Aging project.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3