Scoparone attenuates glioma progression and improves the toxicity of temozolomide by suppressing RhoA/ROCK1 signaling

Author:

Zhou Yuhao1,Han Zhenying1,Zhao Zilong1,Zhang Jianning1ORCID

Affiliation:

1. Department of Neurosurgery Tianjin Medical University General Hospital Tianjin China

Abstract

AbstractBackgroundGlioma, a type of malignant brain tumor, has become a challenging health issue globally in recent years.MethodsIn this study, we investigated the potential therapeutic role of scoparone in glioma and the underlying mechanism. Initially, transcriptome sequencing was conducted to identify genes that exhibited differential expression in glioma cells treated with scoparone compared to untreated cells. Subsequently, the impact of scoparone on the proliferation, migration, and invasion of glioma cells was assessed in vitro using a range of assays including cell viability, colony formation, wound healing, and transwell assays. Moreover, the apoptotic effects of scoparone on glioma cells were evaluated through flow cytometry and western blot analysis. Furthermore, we established a glioma xenograft mouse model to assess the in vivo antitumor activity of scoparone. Lastly, by integrating transcriptome analysis, we endeavored to unravel the molecular mechanisms underlying the observed antitumor effects of scoparone by examining the expression levels of RhoA/ROCK1 signaling pathway components using western blot analysis and qRT‐PCR.ResultsOur transcriptome sequencing results revealed that scoparone significantly downregulated RhoA/ROCK1 signaling in glioma cells. Furthermore, scoparone treatment inhibited glioma cell proliferation, migration, and invasion, and promoted cell apoptosis in vitro. Moreover, scoparone reduced tumor growth and prolonged survival in a glioma xenograft mouse model, and improved the toxicity of temozolomide. Finally, our results showed that the antitumor effects of scoparone were mediated by the suppression of RhoA/ROCK1 signaling.ConclusionScoparone could be a promising therapeutic agent for glioma by suppressing RhoA/ROCK1 signaling. These findings pave the way for future research endeavors aimed at the development and optimization of scoparone‐based therapeutic strategies.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3