Enhancing HLA‐B27 antigen detection: Leveraging machine learning algorithms for flow cytometric analysis

Author:

Baráth Sándor1,Singh Parvind1,Hevessy Zsuzsanna1ORCID,Ujfalusi Anikó1,Mezei Zoltán1,Balogh Mária1,Száraz Széles Marianna1,Kappelmayer János1

Affiliation:

1. Department of Laboratory Medicine, Faculty of Medicine University of Debrecen Debrecen Hungary

Abstract

AbstractAs the association of human leukocyte antigen B27 (HLA‐B27) with spondylarthropathies is widely known, HLA‐B27 antigen expression is frequently identified using flow cytometric or other techniques. Because of the possibility of cross‐reaction with off target antigens, such as HLA‐B7, each flow cytometric technique applies a “gray zone” reserved for equivocal findings. Our aim was to use machine learning (ML) methods to classify such equivocal data as positive or negative. Equivocal samples (n = 99) were selected from samples submitted to our institution for clinical evaluation by HLA‐B27 antigen testing. Samples were analyzed by flow cytometry and polymerase chain reaction. Features of histograms generated by flow cytometry were used to train and validate ML methods for classification as logistic regression (LR), decision tree (DT), random forest (RF) and light gradient boost method (GBM). All evaluated ML algorithms performed well, with high accuracy, sensitivity, specificity, as well as negative and positive predictive values. Although, gradient boost approaches are proposed as high performance methods; nevertheless, their effectiveness may be lower for smaller sample sizes. On our relatively smaller sample set, the random forest algorithm performed best (AUC: 0.92), but there was no statistically significant difference between the ML algorithms used. AUC values for light GBM, DT, and LR were 0.88, 0.89, 0.89, respectively. Implementing these algorithms into the process of HLA‐B27 testing can reduce the number of uncertain, false negative or false positive cases, especially in laboratories where no genetic testing is available.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3