Thermal stability and decomposition kinetics of polybenzoxazine and oligomeric polyhedral octaphenyl silsesquioxane nanocomposites

Author:

Faghihi Jalal1,Azar Ahmad Aref1,Khonakdar Hossein Ali2ORCID,Tohidian Mahdi1

Affiliation:

1. Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran

2. Department of Polymer Processing Iran Polymer and Petrochemical Institute Tehran Iran

Abstract

AbstractIn this study, the impact of octaphenyl polyhedral oligomeric silsesquioxane (POSS) on the thermal stability of polybenzoxazine resin at 1, 3, and 5 wt% POSS loading through dynamic thermogravimetric analysis (TGA) at heating rates of 10, 20, 30 and 40°C min−1 was investigated. Besides, the decomposition kinetics of polybenzoxazine resin (PBZ) and various nanocomposites were studied using Kissinger, Friedman, Flynn‐Wall‐Ozawa (FWO) and Coats‐Redfern (CR) models and also, the activation energies of samples were calculated. At first, benzoxazine monomer was synthesized and then nanocomposites were prepared via solution mixing method. The qualitative dispersion of nanoparticles in benzoxazine resin was examined through the utilization of scanning electron microscopy and x‐ray diffraction experiments. The results showed that the addition of nanoparticles improved the thermal stability of PBZ resin specially at 1 wt% POSS loading and at higher POSS content the thermal stability of the resin decreased. As determined by TGA, the char yield of resin was enhanced by 2.6% upon the addition of 1 wt% nanoparticles. In addition, in 1 weight percent of nanoparticles, as the heating rate rose from 10 to 40°C min−1, the Integral Program Decomposition Temperature (IPDT) has increased by about 260°C, and this increase is about 183°C compared to the resin, and also elevating the heating rate, Td (5%) and Td (10%) weight loss of samples shifted to higher temperatures. The degradation mechanism of the resin and nanocomposites was evaluated through Kissinger, Friedman, FWO and CR models. The results displayed that the addition of 1 wt% nanoparticles increased the activation energy (Ea) values of the nanocomposites compared to that of neat resin and above this filler content, the Ea values decreased. The findings derived from the FWO model indicated that the inclusion of a 1 wt% filler raised the Ea values of the first and second stages of PBZ resin decomposition from 136–200 and 151–214 kJ mol−1 to 148–210 and 180–228 kJ mol−1, respectively.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3