Characterization of 405B8H3(D‐E), a newly engineered high affinity chimeric LAG‐3 antibody with potent antitumor activity

Author:

Lan Xiaoxuan12ORCID,Yang Teddy Tat Chi2,Wang Yinghui2,Qu Baoyuan3,Rong Shaofeng1,Song Ningning2

Affiliation:

1. School of Perfume and Aroma Technology Shanghai Institute of Technology China

2. Shanghai ChemPartner Co., Ltd. China

3. Jiangsu Huaiyu Pharmaceutical Co., Ltd. China

Abstract

Lymphocyte activation gene‐3 (LAG‐3) is a type I transmembrane protein with structural similarities to CD4. Overexpression of LAG‐3 enables cancer cells to escape immune surveillance, while its blockade reinvigorates exhausted T cells and strengthens anti‐infection immunity. Blockade of LAG‐3 may have antitumor effects. Here, we generated a novel anti‐LAG‐3 chimeric antibody, 405B8H3(D‐E), through hybridoma technology from monoclonal antibodies produced in mice. The heavy‐chain variable region of the selected mouse antibody was grafted onto a human IgG4 scaffold, while a modified light‐chain variable region was coupled to the human kappa light‐chain constant region. 405B8H3(D‐E) could effectively bind LAG‐3‐expressing HEK293 cells. Moreover, it could bind cynomolgus monkey (cyno) LAG‐3 expressed on HEK293 cells with a higher affinity than the reference anti‐LAG‐3 antibody BMS‐986016. Furthermore, 405B8H3(D‐E) promoted interleukin‐2 secretion and was able to block the interactions of LAG‐3 with liver sinusoidal endothelial cell lectin and major histocompatibility complex II molecules. Finally, 405B8H3(D‐E) combined with anti‐mPD‐1‐antibody showed effective therapeutic potential in the MC38 tumor mouse model. Therefore, 405B8H3(D‐E) is likely to be a promising candidate therapeutic antibody for immunotherapy.

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3