Mixed‐Dimensional Membranes with Double 0D@2D Structures Enable Efficient and Sustainable Water Treatment

Author:

Zhang Zixin1,Fu Huaqiang2,Wang Zhe1,Qian Wei3,Zhao Xin3,Si Yunfa2,Guo Jiannan3,Cao Shaowen1,He Daping23ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China

2. School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 P. R. China

3. Hubei Engineering Research Center of Radio Frequency Microwave Technology and Application Wuhan University of Technology Wuhan 430070 P. R. China

Abstract

AbstractHigh‐efficiency and sustainable membrane purification technology is highly desirable but unattainable in the field of water treatment. 2D materials are emerging as very promising candidates for water treatment applications. However, membranes assembled by pure 2D materials lack reasonable structural and functional design, usually exhibiting relatively low water permeance, purification performance, and fouling resistance. Here, a mixed‐dimensional membrane is designed to solve the above‐mentioned problems by assembling two kinds of in situ grown 0D@2D functional building blocks of SiO2@GO and TiO2@MXene. Specifically, the obtained membrane exhibits high and maintainable water permeance of 2114 L m−2 h−1 bar−1 as well as high rejection rates toward organic dyes thanks to the plentiful firm water channels constructed by 0D@2D structures and the negative charges on both SiO2@GO and TiO2@MXene, respectively. Moreover, the 0D@2D TiO2@MXene serves as photocatalyst, rendering the composite membrane intriguing self‐cleaning function under UV irradiation, which is verified by the high recovery ratios of water permeance (97.5%) and dye interception rate (98.7%). Thus, this work offers a promising approach for the design of highly efficient and sustainable membrane for separation and purification purposes.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3