Facile Fabrication Technique of Polymeric Ionic Liquids‐Coated Core–Shell Nanoparticles for Polymer Electrolyte Membranes

Author:

Tabata Keisuke1ORCID,Makino Tsutomu1,Matsuo Yoshimasa1,Sinkus Rose2,Masuhara Akito13ORCID

Affiliation:

1. Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992–8510 Japan

2. Department of Physics & Astronomy Pomona College Claremont CA 91711 USA

3. Research Center for Organic Electronics Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992–8510 Japan

Abstract

AbstractNanoparticles and nanofibers are widely used as components of polymer electrolytes for membranes in fuel cells, and many surface modification methods are reported. However, some fabrication techniques are complicated, and it is necessary to develop a simplified and precise control method. Herein, a facile fabrication method is reported for core–shell nanoparticles hierarchically coated with polymeric ionic liquids (PIL) and hydrophobic polymers as a material for polymer electrolytes. A hierarchical polymer layer on the surface of the SiO2 nanoparticles is easily constructed by repeating the facile polymer‐coating technique based on precipitation polymerization several times. The highest proton conductivity of the core–shell nanoparticles is 1.3 × 10−2 S cm−1 at 80 °C and 95% relative humidity. Although the hydrophobic polymers coated as a protective layer reduce the proton conductivity, the formation of the PIL enhances the proton conductivity in various temperature and humidity environments. Therefore, the proposed method enables the facile fabrication of polymer layers with multiple functions, such as a proton‐conductive PIL layer and hydrophobic polymer layers as protective layers on the surface of the nanoparticles. Furthermore, they are expected to be applied to energy supply and gas separation, including polyelectrolytes, for the realization of a sustainable society.

Funder

National Coordination Office

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3