Affiliation:
1. Chemistry Department University of Bari “Aldo Moro” via Orabona 4 Bari I‐70126 Italy
2. CNR‐IPCF Istituto per i Processi Chimico Fisici/Consiglio Nazionale delle Ricerche via Orabona 4 Bari I‐70126 Italy
3. CNR‐ISPA Institute of Sciences of Food Production S. P. Lecce‐Monteroni Lecce I‐73100
Abstract
AbstractPhotoactive biohybrid soft nanoparticles are obtained by embedding the Rhodobacter sphaeroides Reaction Center (RC) in polydopamine (PDA) suspended aggregates and treating them with ethylenediamine (EDA). Such PDA:EDA@RC nanoparticles are investigated for photocurrent generation in photoelectrochemical cells, which are able to convert sunlight into electrical energy. The photosynthetic protein retains its structural and functional integrity in the nanostructures and the PDA:EDA@RC nanoparticles exhibit better water dispersity, improved light collection ability, and higher photocurrent generation compared to the PDA@RC precursors, where the reaction center is embedded in pure PDA. The hybrid soft nanoparticles incorporating the RC bacterial photoenzyme show charge separated state generation comparable to that of the pristine enzyme in solution, overcoming the main limitation of RC encapsulation in pure PDA, which is the polymer low light transmission ability. As a consequence, photocurrents obtained by RC within the PDA:EDA environment are almost doubled with respect to the PDA@RC. The biohybrid composites described here represent an interesting example of effective functional nanostructures for sunlight photoconversion based on a biological component addressed in a tunable biocompatible polymer composite, also showing the potential of fine chemical tailoring of polydopamine biointerfaces.
Funder
H2020 Future and Emerging Technologies
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献