Nicorandil attenuates cognitive impairment after traumatic brain injury via inhibiting oxidative stress and inflammation: Involvement of BDNF and NGF

Author:

Tu Yaoyan1,Han Desen1,Liu Yanjun1,Hong Dequan1,Chen Rehua1ORCID

Affiliation:

1. Department of Emergency and Trauma Center Nanchang First Hospital Nanchang Jiangxi China

Abstract

AbstractBackground and purposeCognitive impairment is a prevalent adverse consequence of traumatic brain injury (TBI). The neuroprotective effects of nicorandil (N‐(2‐hydroxyethyl)‐nicotinamide nitrate) has been previously documented, yet its protective effects against cognitive dysfunction post‐TBI remain unclear. Hence, the present study was aimed to evaluate whether nicorandil attenuates cognitive dysfunction in TBI rats and the underlying mechanism behind this process.MethodsThe TBI model was established with a controlled cortical impact (CCI). The effects of nicorandil on cognitive dysfunction of rats with TBI were examined through Novel object recognition (NOR) test, Y‐maze test, and Morris water maze (MWM) task. After behavioral tests, hippocampal tissue was collected for Quantitative real‐time PCR, Western blot analysis, and Enzyme‐linked immunosorbent assay (ELISA) assay.ResultsWe observed that nicorandil administration effectively ameliorates learning and memory impairment in TBI rats. Alongside, nicorandil treatment attenuated oxidative stress in the hippocampus of TBI rats, characterized by the decreased reactive oxygen species generation, malondialdehyde, and protein carbonyls levels, and concurrent promotion of antioxidant‐related factors (including superoxide dismutase, glutathione peroxidase, and catalase) activities. Additionally, nicorandil treatment attenuated the inflammatory response in the hippocampus of TBI rat, as evidenced by the upregulated levels of interleukin (IL)‐1β, IL‐6, and tumor necrosis factor‐α (TNF‐α), as well as the downregulated level of IL‐10. Mechanistically, nicorandil treatment significantly enhanced the mRNA and protein levels of neurotrophic factors, brain‐derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the hippocampus of TBI rats.ConclusionThese findings suggest that nicorandil mitigates cognitive impairment after TBI by suppressing oxidative stress and inflammation, potentially through enhancing BDNF and NGF levels.

Publisher

Wiley

Subject

Behavioral Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3