Step-Wise Chondrogenesis of Human Induced Pluripotent Stem Cells and Purification Via a Reporter Allele Generated by CRISPR-Cas9 Genome Editing

Author:

Adkar Shaunak S.123ORCID,Wu Chia-Lung12,Willard Vincent P.4,Dicks Amanda125,Ettyreddy Adarsh6,Steward Nancy12,Bhutani Nidhi7,Gersbach Charles A.6,Guilak Farshid1254ORCID

Affiliation:

1. Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA

2. Shriners Hospitals for Children—St. Louis, St. Louis, Missouri, USA

3. Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA

4. Cytex Therapeutics, Inc., Durham, North Carolina, USA

5. Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA

6. Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA

7. Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA

Abstract

Abstract The differentiation of human induced pluripotent stem cells (hiPSCs) to prescribed cell fates enables the engineering of patient-specific tissue types, such as hyaline cartilage, for applications in regenerative medicine, disease modeling, and drug screening. In many cases, however, these differentiation approaches are poorly controlled and generate heterogeneous cell populations. Here, we demonstrate cartilaginous matrix production in three unique hiPSC lines using a robust and reproducible differentiation protocol. To purify chondroprogenitors (CPs) produced by this protocol, we engineered a COL2A1-GFP knock-in reporter hiPSC line by CRISPR-Cas9 genome editing. Purified CPs demonstrated an improved chondrogenic capacity compared with unselected populations. The ability to enrich for CPs and generate homogenous matrix without contaminating cell types will be essential for regenerative and disease modeling applications. Stem Cells  2019;37:65–76

Funder

Arthritis Foundation

National Science Foundation CAREER Award

Collaborative Research Center of the AO Foundation

Nancy Taylor Foundation for Chronic Diseases

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3