Ordered Nanoscale Heterojunction Architecture for Enhanced Solution‐Based CuInGaS2 Thin Film Solar Cell Performance

Author:

Barange Nilesh1,Chu Van Ben2,Nam Minwoo3,Ahn In‐Hwan3,Kim Young Dong1,Han Il Ki2,Min Byoung Koun2,Ko Doo‐Hyun3

Affiliation:

1. Department of Physics Kyung Hee University Seoul 02453 Republic of Korea

2. Korea Institute of Science and Technology Seoul 02792 Republic of Korea

3. Department of Applied Chemistry Kyung Hee University Yongin Gyeonggi 17104 Republic of Korea

Abstract

Nanopatterned CuInGaS2 (CIGS) thin films synthesized by a sol‐gel‐based solution method and a nanoimprint lithography technique to achieve simultaneous photonic and electrical enhancements in thin film solar cell applications are demonstrated. The interdigitated CIGS nanopatterns in adjacent CdS layer form an ordered nanoscale heterojunction of optical contrast to create a light trapping architecture. This architecture concomitantly leads to increased junction area between the p‐CIGS/n‐CdS interface, and thereby influences effective charge transport. The electron beam induced current and capacitance–voltage characterization further supports the large carrier collection area and small depletion region of the nanopatterned CIGS solar cell devices. This strategic geometry affords localization of incident light inside and between the nanopatterns, where created excitons are easily dissociated, and it leads to the enhanced current generation of absorbed light. Ultimately, this approach improves the efficiency of the nanopatterned CIGS solar cell by 55% compared to its planar counterpart, and offers the possibility of simultaneous management for absorption and charge transport through a nanopatterning process.

Funder

Kyung Hee University

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Science, ICT and Future Planning

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3