Frogspawn‐Coral‐Like Hollow Sodium Sulfide Nanostructured Cathode for High‐Rate Performance Sodium–Sulfur Batteries

Author:

Wang Chuanlong1,Wang Huan1,Hu Xiaofei1,Matios Edward1,Luo Jianmin1,Zhang Yiwen1,Lu Xuan1,Li Weiyang1ORCID

Affiliation:

1. Thayer School of Engineering Dartmouth College 14 Engineering Drive Hanover NH 03755 USA

Abstract

AbstractRoom‐temperature (RT) sodium–sulfur (Na–S) batteries are attractive cost‐effective platforms as the next‐generation energy storage systems by using all earth‐abundant resources as electrode materials. However, the slow kinetics of Na–S chemistry makes it hard to achieve high‐rate performance. Herein, a facile and scalable approach has been developed to synthesize hollow sodium sulfide (Na2S) nanospheres embedded in a highly hierarchical and spongy conductive carbon matrix, forming an intriguing architecture similar to the morphology of frogspawn coral, which has shown great potential as a cathode for high‐rate performance RT Na–S batteries. The shortened Na‐ion diffusion pathway benefits from the hollow structures together with the fast electron transfer from the carbon matrix contributes to high electrochemical reactivity, leading to superior electrochemical performance at various current rates. At high current densities of 1.4 and 2.1 A g−1, high initial discharge capacities of 980 and 790 mAh g−1sulfur can be achieved, respectively, with reversible capacities stabilized at 600 and 400 mAh g−1sulfur after 100 cycles. As a proof of concept, a Na‐metal‐free Na–S battery is demonstrated by pairing the hollow Na2S cathode with tin‐based anode. This work provides guidance on rational materials design towards the success of RT high‐rate Na–S batteries.

Funder

Air Force Office of Scientific Research

Publisher

Wiley

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3