A sequential, multiple assignment, randomized trial design with a tailoring function

Author:

Hartman Holly1ORCID,Schipper Matthew2ORCID,Kidwell Kelley2ORCID

Affiliation:

1. Population and Quantitative Health Sciences Case Western Reserve University Cleveland Ohio USA

2. Department of Biostatistics University of Michigan Ann Arbor Michigan USA

Abstract

We present a trial design for sequential multiple assignment randomized trials (SMARTs) that use a tailoring function instead of a binary tailoring variable allowing for simultaneous development of the tailoring variable and estimation of dynamic treatment regimens (DTRs). We apply methods for developing DTRs from observational data: tree‐based regression learning and Q‐learning. We compare this to a balanced randomized SMART with equal re‐randomization probabilities and a typical SMART design where re‐randomization depends on a binary tailoring variable and DTRs are analyzed with weighted and replicated regression. This project addresses a gap in clinical trial methodology by presenting SMARTs where second stage treatment is based on a continuous outcome removing the need for a binary tailoring variable. We demonstrate that data from a SMART using a tailoring function can be used to efficiently estimate DTRs and is more flexible under varying scenarios than a SMART using a tailoring variable.

Funder

Patient-Centered Outcomes Research Institute

National Cancer Institute

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3