Potential application of spectral indices for olive water status assessment in (semi‐)arid regions: A case study in Khuzestan Province, Iran

Author:

Asgari Azimeh1,Hooshmand Abdolrahim1ORCID,Broumand‐Nasab Saeed1,Zivdar Shohreh2

Affiliation:

1. Irrigation and Drainage, Water and Environmental Engineering College Shahid Chamran University of Ahvaz Ahvaz Iran

2. Horticulture, College of Agriculture Shahid Chamran University of Ahvaz Ahvaz Iran

Abstract

AbstractSpectral indices can be used as fast and non‐destructive indicators of plant water status or stress. It is the objective of the present study to evaluate the feasibility of using several spectral indices including water index (WI) and normalized spectral water indices 1–5 (NWI 1–5) to estimate water status in olive trees in arid regions in Iran. The experimental treatments involved two olive cultivars (Koroneiki and T2) and four irrigation regimes (irrigated with 100%, 85%, 70%, and 55% estimated crop evapotranspiration [ETc]). The results obtained showed that olive trees subjected to the different irrigation regimes of 85%, 70%, and 55% ETc experienced soil water content (SWC) deficits by 4.5%, 12%, and 20.5% that of the control, respectively. Significant differences were observed among the treatments with respect to measured relative water content (RWC), SWC, and the spectral indices of WI and NWI 1–5. The normalized spectral indices combining NIR and NIR wavelengths were found more effective in tracking changes in RWC and SWC than those that combine NIR and VIS or VIS and VIS wavelengths, respectively. Spectral indices were closely and significantly associated with RWC () and SWC (). Among all the spectral indices investigated, NWI‐2 showed the least consistent associations with RWC (ranging from 4–15% lower than the other indices examined) and SWC (ranging from 1–23% lower than the others). Based on the pooled data on spectral indices, RWC, and SWC collected during the study period, WI, NWI‐1, NWI‐4, and NWI‐5 showed stronger correlations with RWC and SWC than did NWI‐3 and NWI‐2. In conclusion, the spectral indices of WI and NWI 1–5 measured at the leaf level are found useful as fast and non‐destructive estimators of plant water stress in arid regions.

Publisher

Wiley

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3