Lightweight polyethylene terephthalate bead foams with good interfacial adhesion and thermal insulation performance fabricated by supercritical carbon dioxide secondary foaming strategy

Author:

Yang Senlin12,Ma Wenjie13,Ren Xiangfeng1,Han Dong2,Wang Zengzeng1,Xu Dawei1ORCID

Affiliation:

1. State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China

2. Wind Power Research and Design Institute Dongfang Electric Wind Power Co., Ltd Deyang China

3. Department of Chemistry City University of Hong Kong Hong Kong China

Abstract

AbstractThis paper reported the novel supercritical carbon dioxide (scCO2) secondary foaming and molding strategy to prepare the thermal‐insulation polyethylene terephthalate (PET) bead foam part with good interfacial adhesion and high expansion ratio. The incorporation of porous structure could effectively enhance the blowing agent solubility and fabricate the system viscosity difference, which contributed to the expansion and further welding of the expanded PET beads. Under the optimum foaming conditions, PET bead foam parts with excellent comprehensive performance were successfully prepared by molding method in the confined space via scCO2 secondary foaming, and the corresponding welding mechanism of PET beads was further investigated. The obtained foam parts possessed good tensile and compressive properties, reaching 1.03 and 1.27 MPa (at 20% strain) respectively. Besides, the foam part exhibited the low thermal conductivity of 0.060 Wm−1 K−1, which confirmed the improvement of thermal insulation performance owing to the high expansion ratio.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

State Key Laboratory of Polymer Materials Engineering

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3