Assessing the precision of a detergent‐assisted cartridge precipitation workflow for non‐targeted quantitative proteomics

Author:

Nickerson Jessica L.1,Gagnon Hugo2,Wentzell Peter D.1,Doucette Alan A.1ORCID

Affiliation:

1. Department of Chemistry Dalhousie University Halifax Nova Scotia Canada

2. PhenoSwitch Bioscience Inc. Sherbrooke Quebec Canada

Abstract

AbstractDetergent‐based workflows incorporating sodium dodecyl sulfate (SDS) necessitate additional steps for detergent removal ahead of mass spectrometry (MS). These steps may lead to variable protein recovery, inconsistent enzyme digestion efficiency, and unreliable MS signals. To validate a detergent‐based workflow for quantitative proteomics, we herein evaluate the precision of a bottom‐up sample preparation strategy incorporating cartridge‐based protein precipitation with organic solvent to deplete SDS. The variance of data‐independent acquisition (SWATH‐MS) data was isolated from sample preparation error by modelling the variance as a function of peptide signal intensity. Our SDS‐assisted cartridge workflow yield a coefficient of variance (CV) of 13%–14%. By comparison, conventional (detergent‐free) in‐solution digestion increased the CV to 50%; in‐gel digestion provided lower CVs between 14% and 20%. By filtering peptides predicting to display lower precision, we further enhance the validity of data in global comparative proteomics. These results demonstrate the detergent‐based precipitation workflow is a reliable approach for in depth, label‐free quantitative proteome analysis.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3