Affiliation:
1. Department of Chemistry University of Wisconsin–Madison Madison Wisconsin USA
2. School of Pharmacy University of Wisconsin–Madison Madison Wisconsin USA
Abstract
AbstractNeuropeptides have tremendous potential for application in modern medicine, including utility as biomarkers and therapeutics. To overcome the inherent challenges associated with neuropeptide identification and characterization, data‐independent acquisition (DIA) is a fitting mass spectrometry (MS) method of choice to achieve sensitive and accurate analysis. It is advantageous for preliminary neuropeptidomic studies to occur in less complex organisms, with crustacean models serving as a popular choice due to their relatively simple nervous system. With spectral libraries serving as a means to interpret DIA‐MS output spectra, and Cancer borealis as a model of choice for neuropeptide analysis, we performed the first spectral library mapping of crustacean neuropeptides. Leveraging pre‐existing data‐dependent acquisition (DDA) spectra, a spectral library was built using PEAKS Online. The library is comprised of 333 unique neuropeptides. The identification results obtained through the use of this spectral library were compared with those achieved through library‐free analysis of crustacean brain, pericardial organs (PO), and thoracic ganglia (TG) tissues. A statistically significant increase (Student's t‐test, P value < 0.05) in the number of identifications achieved from the TG data was observed in the spectral library results. Furthermore, in each of the tissues, a distinctly different set of identifications was found in the library search compared to the library‐free search. This work highlights the necessity for the use of spectral libraries in neuropeptide analysis, illustrating the advantage of spectral libraries for interpreting DIA spectra in a reproducible manner with greater neuropeptidomic depth.
Funder
National Science Foundation
National Institutes of Health
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献