Simultaneous onboard analysis of seawater dissolved inorganic carbon (DIC) concentration and stable isotope ratio (δ13C‐DIC)

Author:

Sun Zhentao1ORCID,Li Xinyu12,Ouyang Zhangxian1ORCID,Featherstone Charles3,Atekwana Eliot A.4,Hussain Najid1ORCID,Cai Wei‐Jun1ORCID

Affiliation:

1. School of Marine Science and Policy, University of Delaware Newark Delaware USA

2. Cooperative Institute for Climate Ocean and Ecosystem Studies (CICOES), University of Washington Seattle Washington USA

3. Atlantic Oceanographic and Meteorological Laboratory National Oceanic and Atmospheric Administration Miami Florida USA

4. Department Earth and Planetary Sciences University of California Davis Davis California USA

Abstract

AbstractDissolved inorganic carbon (DIC) and its stable carbon isotope (δ13C‐DIC) are valuable parameters for studying the aquatic carbon cycle and quantifying ocean anthropogenic carbon accumulation rates. However, the potential of this coupled pair is underexploited as only 15% or less of cruise samples have been analyzed for δ13C‐DIC because the traditional isotope analysis is labor‐intensive and restricted to onshore laboratories. Here, we improved the analytical precision and reported the protocol of an automated, efficient, and high‐precision method for ship‐based DIC and δ13C‐DIC analysis based on cavity ring‐down spectroscopy (CRDS). We also introduced a set of stable in‐house standards to ensure accurate and consistent DIC and δ13C‐DIC measurements, especially on prolonged cruises. With this method, we analyzed over 1600 discrete seawater samples over a 40‐d cruise along the North American eastern ocean margin in summer 2022, representing the first effort to collect a large dataset of δ13C‐DIC onboard of any oceanographic expedition. We evaluated the method's uncertainty, which was 1.2 μmol kg−1 for the DIC concentration and 0.03‰ for the δ13C‐DIC value (1σ). An interlaboratory comparison of onboard DIC concentration analysis revealed an average offset of 2.0 ± 3.8 μmol kg−1 between CRDS and the coulometry‐based results. The cross‐validation of δ13C‐DIC in the deep‐ocean data exhibited a mean difference of only −0.03‰ ± 0.07‰, emphasizing the consistency with historical data. Potential applications in aquatic biogeochemistry are discussed.

Funder

National Oceanic and Atmospheric Administration

National Science Foundation

Caterpillar

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3