Reinforcement learning‐based optimal trajectory tracking control of surface vessels under input saturations

Author:

Wei Ziping1ORCID,Du Jialu1ORCID

Affiliation:

1. School of Marine Electrical Engineering Dalian Maritime University Dalian China

Abstract

AbstractThis paper develops a reinforcement learning (RL)‐based optimal trajectory tracking control scheme of surface vessels with unknown dynamics, unknown disturbances, and input saturations of surface vessels. The control scheme is designed by combining the optimal control theory, adaptive neural networks, and the RL method in a unified actor‐critic NN framework. A hyperbolic‐type penalty function of the control input is designed so as to deal with the input saturations of surface vessels. An actor‐critic NN‐based RL mechanism is established to learn the optimal trajectory tracking control law without the knowledge of the surface vessel dynamics and disturbances, where NN weights are tuned online on the basis of devised tuning laws. Theoretical analysis and simulation results prove that the proposed RL‐based optimal trajectory tracking control scheme can ensure surface vessels track the desired trajectory, while guaranteeing the boundedness of all signals in the surface vessel optimal trajectory tracking closed‐loop control system.

Funder

Dalian Science and Technology Innovation Fund

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3