Highly active iron oxide@NC catalyst derived from the iron acetate/polyacrylonitrile threads: Driving nitroarene conversion to value‐added amines

Author:

Rubab Anosha1,Sharif Muhammad2,Razzaq Rauf3,Jackstell Ralf3ORCID,Nafady Ayman4ORCID,Weiß Jana3,Sohail Manzar1ORCID

Affiliation:

1. Department of Chemistry School of Natural Sciences, National University of Sciences and Technology Islamabad Pakistan

2. Department of Chemistry University of Lahore Lahore Pakistan

3. Leibniz‐Institut für Katalyse an der Universität Rostock Rostock Germany

4. Chemistry Department, College of Science King Saud University Riyadh Saudi Arabia

Abstract

AbstractChemoselective reduction of nitroarenes to corresponding arylamines is a significant reaction in the chemical industry. However, in the presence of other reducible groups, including halogenated nitrobenzene, nitrobiphenyl, and nitroquinoline in the same molecule of nitroaromatics, the control of chemoselectivity remains challenging. Here, a facile fabrication of a heterogeneous iron‐based catalyst is reported as a potential alternative to precious metal catalysts for the chemoselective reduction of nitroarenes. The pyrolysis of iron acetate/polyacrylonitrile (PAN) template under an inert atmosphere furnishes active Fe3O4 nanoparticles (NPs) encapsulated in nitrogen‐doped (N‐doped) carbon layers, which can provide more catalytic active sites (Fe3O4/PAN@800). Notably, non‐precious iron oxide NPs supported on N‐doped carbon support prevent aggregation, thereby enhancing the catalytic activity. The sustainable and reusable Fe3O4/PAN@800 catalyst, having only 0.8% metal content as demonstrated by x‐ray photoelectron spectroscopy, delivers excellent yields of corresponding amines from differently functionalized nitroarenes. Hydrogenation of a series of structurally functionalized nitroarenes produced excellent yields of anilines, which serve as building blocks and intermediates for fine and bulk chemicals. Hydrogenation of 2‐chloro‐3‐nitropyridine, 2‐nitro‐1,1′‐biphenyl, ortho‐nitroaniline, and 4‐aminophenyl acrylonitrile yielded respective anilines up to 99%. The active sites of Fe3O4 have magnetic performance, hence, the catalyst can be easily recovered using a magnet and reused for at least five cycles without significant loss of catalytic activity. Therefore, the easily prepared, cost‐effective, and reusable Fe3O4/PAN@800 catalyst presented in this study shows potential for applications in the selective reduction of aromatic nitro compounds. Consequently, this study potentially establishes a guideline for the facile preparation of abundant transition‐non‐noble metal‐based reusable supported catalysts for various applications in the chemical industry.

Funder

Deanship of Scientific Research, King Saud University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3