Tumor cell dissociation‐enhanced intravesical chemotherapy of orthotopic bladder cancer

Author:

Ma Zhaoyu1,Sun Zhiduo2,Ye Zhichao3,Cai Kai4,Zhong Wenbin1,Yuan Wei1,Zhang Weiyun2,Zhang Jin2,Zhang Kai2,Liang Huageng3,Han Heyou2,Zhao Yanli1ORCID

Affiliation:

1. School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University Singapore Singapore

2. State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology Huazhong Agricultural University Wuhan China

3. Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan China

4. College of Chemistry & Environmental Engineering Yangtze University Jingzhou China

Abstract

AbstractFrequent intravesical chemotherapy is still the adopted clinical option after bladder cancer surgery with low adhesion, poor selectivity, low permeability, and drug resistance. Herein, we develop an ingenious bladder cancer dissociation method to enhance intravesical chemotherapy and tumor self‐exclusion with urine. Ethylene diamine tetraacetic acid (EDTA), a common Ca2+ chelator, is loaded with the typical clinical bladder instillation drug doxorubicin (Dox) in chitosan‐modified hollow gold nanorods and subsequently coated with cancer cell membranes. After bladder perfusion, the nanoplatform exhibits high affinity toward bladder tumors under homologous targeting, assisting in long‐term retention. Under NIR‐II laser irradiation, the photothermal effect accelerates the unloading of cargo, and the released EDTA then disrupts intratumoral junctions by depriving and chelating Ca2+ from the intercellular calcium‐dependent connexin. The consequential intertumoral dissociation gives access to the deeper penetration of Dox and allows the exclusion of the shed small tumor masses from the body with the urine. This distinctive tumor dissociation concept holds great promise for modern clinical intravesical chemotherapy and perhaps for other gastrointestinal malignancies.

Funder

National Natural Science Foundation of China

National Research Foundation Singapore

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3