Operation optimization of cold‐end system of direct air‐cooled units considering the effect of environmental wind

Author:

Zhu Xingrong1,Zhan Jianyong1

Affiliation:

1. School of Electrical and Electronic Engineering Guangdong Technology College Zhaoqing Guangdong China

Abstract

AbstractAn air‐cooled island can significantly alter the heat transfer performance of an air‐cooled condenser due to the reflow of hot air caused by environmental wind. This can result in a considerable deviation between the backpressure calculated by traditional air‐cooled condenser models and the actual value. To address the issue, a research study was conducted on a 600‐MW direct air‐cooled unit. Numerical simulation methods were used to obtain the corresponding air flow rates and fan inlet air temperatures for each air‐cooled heat exchanger, which were then combined to establish a backpressure calculation model. From the above model, the backpressure prediction model and unit net output of full conditions were established using a backpropagation neural network. Therefore, taking the net output as the optimization objective, a genetic algorithm was used to compute the optimal backpressure and optimal fan speed in off‐design situations. Compared with traditional calculation approaches, the model produces backpressure predictions that were closer to the actual situation under the effect of ambient wind. The results indicate that both the optimal backpressure and fan speed were positively correlated with the exhaust flow and ambient temperature. It has been observed that when a unit was affected by different wind directions, the effect of the forwarding wind on the backpressure was smaller than that of other wind directions, especially under high‐load conditions. Moreover, the fan group operates close to full capacity under high‐temperature and high‐load conditions. Therefore, considering the influence of ambient wind, the obtained optimal backpressure and fan speed under variable working conditions were more realistic.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3