Affiliation:
1. Departamento de Ciencias Químicas Universidad de Buenos Aires Facultad de Farmacia y Bioquímica - CONICET Junín 954 CP 1113 Buenos Aires Argentina
2. Istituto per la Sintesi Organica e la Fotoreattività (ISOF) Consiglio Nazionale delle Ricerche (CNR) via Piero Gobetti 101 40129 Bologna Italy
Abstract
AbstractThis Perspective analyses the perfluoroalkylation reactions by electron donor‐acceptor (EDA) complexes since 2018, while summarizes, in Tables , the vast majority of representative perfluoroalkylation reactions of various classes of organic compounds by EDA complexes and halogen‐bonding interactions. Numerous intriguing reaction methodologies and valuable synthetic instances have emerged. We aim to delve into these new examples comprehensively, while also contemplating the future directions in the field. Subsequent sections will elaborate on the perfluoroalkylation of (hetero)aromatic compounds, carbon‐carbon multiple bonds, perfluoroalkylation of carbonyl compounds, and perfluoroalkylation of isocyanides, covering their synthetic scope and mechanistic insights.
Perfluoroalkylation reactions of (hetero)aromatic compounds by EDA complexes.
Entry
Substrate
Complex
Reaction conditions
Product
Ref.
1
[13]
2
[46]
3
RFI (3 equiv.)
KOH (1.5 equiv.)
Blue LEDs
H2O, Ar, 20 h
[47]
4
TEEDA (3 equiv.)
CFL (25 W)
THF, r.t.
RF−I (3 equiv.)
[48]
5
ICF2CO2Et (1.3 equiv.)
Na2CO3 (1.5 equiv.)
DMSO (3 mL)
Ar, rt.
427 nm LED, 16 h
[49]
6
TMG (2.5 equiv.)
RF−I (2.5 equiv.)
23 W CFL, MeCN/Hexf (5 : 1)
[42,50]
7
TMG (2.5 equiv.)
RF−I (2.5 equiv.)
23 W CFL, MeCN
[51]
8
Umemoto's reagent (2 equiv.)
N‐methylmorpholine (2.5 equiv.)
DMF, r.t.
[52]
9
Cs2CO3 (2 equiv.)
RF−I (3 equiv.)
white light
H2O (3 equiv.)
DMF, r.t., 2 h
[53]
10
4.5 W 450 nm laser
CaCl2, MeNO2, 0 °C
[3]
11
RF−I (1.5 equiv.)
t‐BuONa (2 equiv.)
DMF
Green LEDs
[54]
12
or
EDA complex
I−Rf (2.1 equiv.)
TMEDA (2 equiv.) or DBU (2 equiv.)
Blue LEDs 24 W
[55,56]
13
TFE/water (1 : 1) (0.2 M)
CF3SO2Na
Blue LEDs
r.t., 12 h
[84]
Perfluoroalkylation reactions of carbon‐carbon multiple bonds and constrained cyclic compounds by EDA complexes.
Entry
Substrate
Complex
Reaction conditions
Product
Ref.
1
Bu4NCl, Hg lamp (6 W)
RF−I (1.2 equiv.)
CH3OH, 1.5 h
r.t, Ar
[39]
2
RFI (3 equiv.)
KOH (1.5 equiv.)
Blue LEDs
H2O, Ar, 20 h
[47]
3
[57]
4
DIPEA or TMEDA or DBU or TEEDA ……..CF3I
CF3−I (3 equiv.)
Base (2 equiv.)
MeCN or DMF or THF
CFL, 25 W
with DIPEA, TMEDA or TEEDA;
with DBU
[48,58,59]
5
Bn2NH
MeCN
RF−I
Blue LED, r.t.
[60]
6
Base, Blue LEDs
DMF or THF
[61]
7
I−RF
H2O/toluene=9 : 1
Blue LEDs, 65 °C, 12 h
[41]
8
K3PO4 (3 equiv.)
RF−I (3 equiv.)
CuCl (10 mol%)
TMSNCS (3 equiv.)
CH3CN (2 mL)
Violet LEDs (24 W)
Ar, 4 h
[37]
9
RF−I (3 equiv.)
Diphenylacetaldehyde (10 mol%)
Pyrrolidine (40 mol%)
DIPEA (2 equiv.)
DCE (2.5 mL); O2 (0.8 eq.); Ar
White LEDs (2.5 W); 24 h
[44,62]
10
DIPEA,DMA
Ar (trace air)
Blue LEDs, rt. 36–72 h
[63]
11
TMEDA
Blue LEDs
n‐C4F9I
DMSO
air, 24 h RT
[64]
12
K3PO4 (2 equiv.)
DABCO (1.2 equiv.)
hυ (400 Watt)
50 °C
CnF2n+1I (1.8 equiv.)
[65–67]
13
Blue LEDs
DCE, r.t.
[27]
14
2,4,6‐trimethylpyridine
MeCN, 60 °C
Togni's reagent
[68]
15
PMDETA (2 equiv.)
DMSO (2 mL)
N2, Blue LEDs
[69]
16
Blue LEDs
[70,71]
17
MeCN (0.2 M) with less than 1 % water
CF3SO2Na (1 mmol)
Blue LEDs
[84]
Perfluoroalkylation of carbonyl compounds, isocyanides and hydrazones.
Entry
Substrate
Complex
Reaction conditions
Product
Ref.
1
[72,73]
2
RF−I (0.2 mmol)
cis‐catalyst M (20 mol%)
2,6‐lutidine (1.2 equiv.)
Blue LEDs, Et2O (0.7 M)
‐10 °C, 20 h
[74]
3
white light
RF−I
[75]
4
phase transfer catalyst
Cs2CO3, C6H5Cl/8F18 (2 : 1),
25 °C, RF−I
[32]
5
ambient light
C4F9−I
NaOH (4.1 equiv.)
MeCN, R.T.
[76]
6
RFI (3 equiv.)
KOH (1.5 equiv.)
Blue LEDs
THF, Ar, 36 h
[47]
7
RF−I (2 equiv.)
TMEDA (2 equiv.)
THF (2 mL)
Blue LEDs (25 W)
30 °C, N2
[77]
8
TEEDA (1.5 equiv.)
CFL (25 W)
THF
I−C4F9
[48]
9
Bn2NH
Blue LEDs
MeCN, RT
RF−I
[78]
10
TMG (1.5 equiv.)
ambient light
MeCN, RT
I−RF
[79]
11
Imidazole (3 equiv.)
MeCN,
RF−I (2 equiv.) r.t.
[80]
Funder
Consejo Nacional de Investigaciones Científicas y Técnicas