HspB8 interacts with BAG3 in a “native‐like” conformation forming a complex that displays chaperone‐like activity

Author:

Sciandrone Barbara1,Ami Diletta12,D'Urzo Annalisa1,Angeli Elena3,Relini Annalisa3,Vanoni Marco14,Natalello Antonino12ORCID,Regonesi Maria Elena12ORCID

Affiliation:

1. Department of Biotechnologies and Biosciences University of Milano‐Bicocca Milan Italy

2. Milan Center of Neuroscience (NeuroMI) Milan Italy

3. Department of Physics University of Genoa Genoa Italy

4. ISBE‐SYSBIO Centre of Systems Biology Milan Italy

Abstract

AbstractThe HspB8‐BAG3 complex plays an important role in the protein quality control acting alone or within multi‐components complexes. To clarify the mechanism underlying its activity, in this work we used biochemical and biophysical approaches to study the tendency of both proteins to auto‐assemble and to form the complex. Solubility and Thioflavin T assays, Fourier transform infrared spectroscopy and atomic force microscopy analyses clearly showed the tendency of HspB8 to self‐assemble at high concentration and to form oligomers in a “native‐like” conformation; otherwise, BAG3 aggregates poorly. Noteworthy, also HspB8 and BAG3 associate in a “native‐like” conformation, forming a stable complex. Furthermore, the high difference between dissociation constant values of HspB8‐HspB8 interaction with respect to the binding to BAG3 obtained by surface plasmon resonance confirms that HspB8 is an obligated partner of BAG3 in vivo. Lastly, both proteins alone or in the complex are able to bind and affect the aggregation of the Josephin domain, the structured domain that triggers the ataxin‐3 fibrillation. In particular, the complex displayed higher activity than HspB8 alone. All this considered, we can assert that the two proteins form a stable assembly with chaperone‐like activity that could contribute to the physiological role of the complex in vivo.

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3