An UHPLC–QTOF–MS‐based strategy for systematic profiling of chemical constituents and associated in vivo metabolites of a famous traditional Chinese medicine formula, Yinchenhao decoction

Author:

Wang Jing1ORCID,Ouyang Bingchen2,Cao Rui1,Xu Yu3

Affiliation:

1. Department of Pharmacy Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine Nanjing China

2. Department of Clinical Pharmacology Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China

3. School of Pharmacy Shanghai University of Traditional Chinese Medicine Shanghai China

Abstract

AbstractYinchenhao decoction (YCHD), a famous traditional Chinese medicine formula, has been applied for relieving jaundice in China for more than 1800 years. However, the material basis for YCHD is still unclear, and the chemical composition and metabolism characteristic in vivo are undefined, making the potential effective constituents and mechanism of action unclear. Herein, an ultrahigh‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry (UHPLC–QTOF–MS)‐based strategy was applied for the chemical profiling of YCHD, as well as their in vivo prototypes and global metabolites that defined the metabolome. Our results showed that a total of 139 chemicals were identified in YCHD, including 28 organic acids, 12 monoterpenoids, five diterpenes, three triterpenoids, 17 iridoids, 23 anthraquinones, 26 flavonoids, four coumarins and 21 other types. Moreover, 58 prototypes and 175 metabolites were found in rat biological samples after oral administration of YCHD; those distributed in plasma, liver, intestine and feces were suggested to be potentially effective substances. Oxidation, hydrogenation, decarboxylation and conjugations with methyl, sulfate and glucuronate were considered as the predominant metabolic pathways in vivo. In conclusion, this is a systemic study of chemical constituents and in vivo metabolome profiles of YCHD, contributing to the material basis understanding and further mechanism research.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Clinical Biochemistry,Drug Discovery,Pharmacology,Molecular Biology,General Medicine,Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3